Chapter 12. Amines

Amines are composed of nitrogen atoms bearing alkyl or aromatic groups. The lone pair of electrons on the nitrogen makes amines basic and nucleophilic.

IUPAC system

Primary amines (RNH₂) are named by adding the suffix **–amine** to the name of the organic substituent.

H₂NCH₂CH₂CH₂CH₂NH₂

Cyclohexylamine

Butane-1,4-diamine

Amines that have additional functional groups are named by considering the - NH₂ as an amino substituent on the parent molecule.

Symmetrical secondary and tertiary amines are named by adding the prefix di- or tri- to the alkyl group.

Et—<mark>N</mark>—Et

Diphenylamine

Triethylamine

Unsymmetrically substituted secondary and tertiary amines are named as *N*-substituted primary amines (the largest organic group is chosen as the parent).

$$\begin{array}{c} \mathsf{CH}_3\\ \mathring{\mathsf{N}}-\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3\\ \mathsf{CH}_3 \end{array}$$

N,N-Dimethylpropylamine N-Ethyl-N-methylcyclohexylamine

Heterocyclic amines – compounds in which the nitrogen atom occurs as part of a ring

Each one has its own parent name and the nitrogen atom is numbered as position 1.

12.2 Structure and Properties of Amines

Amines are highly polar, and those with fewer than five carbon atoms are generally water-soluble. Primary and secondary amines form hydrogen bonds and therefore have higher boiling points than alkanes of similar molecular weight.

Low-molecular-weight amines have a distinctive fishlike aroma.

12.3 Basicity of Amines

Because of the lone pair electrons on nitrogen, amines are both basic and nucleophilic.

The relative order of base strength, pK_b .

 RNH_2 + H_2O \implies RNH_3^+ + $OH^ K_{\rm b} = \frac{[\rm RNH_3^+][\rm OH^-]}{[\rm RNH_2]} \qquad pK_{\rm b} = -\log k_{\rm b}$ Amines $pK_{\rm b}$ $(CH_3CH_2)_3N$ 2.99 $CH_3CH_2NH_2$ 3.19 8.75 $(CH_3)_2NH$ 3.27 CH_3NH_2 3.34 9.37 NH_2 $(CH_3CH_2)_2NH$ 3.51 $(CH_3)_3N$ 4.19 NH_3 4.74

Arylamines are weaker base than alkylamines by a factor of about 10^6 . The nitrogen lone-pair electrons in an arylamine are shared by orbital overlap with the π orbitals of the aromatic ring.

Amides (RCONH₂) are **nonbasic**. Amides don't react with acids. The nitrogen lonepair electrons are shared by orbital overlap with the neighboring carbonyl-group π orbital.

12.4 Synthesis of Amines

Reduction of Nitriles and Amides

$$\begin{array}{cccc} \mathsf{RX} & \xrightarrow{\mathsf{NaCN}} & \mathsf{RCN} & \xrightarrow{1. \ \mathsf{LiAlH}_4, \ \mathsf{ether}} & \mathsf{RCH}_2\mathsf{NH}_2 \\ & & & \\ \mathsf{NH}_2\mathsf{NH}_2 & \xrightarrow{\mathsf{NaCN}} & \mathsf{RCN} & \xrightarrow{1. \ \mathsf{LiAlH}_4, \ \mathsf{ether}} & \mathsf{RCH}_2\mathsf{NH}_2 \\ & & & \\ \mathsf{R-C-OH} & \xrightarrow{1. \ \mathsf{SOCI}_2} & \overset{\mathsf{O}}{\underset{2. \ \mathsf{NH}_3}} & \mathsf{R-C-NH}_2 & \xrightarrow{1. \ \mathsf{LiAlH}_4, \ \mathsf{ether}} & \mathsf{RCH}_2\mathsf{NH}_2 \end{array}$$

S_N2 Alkylation Reaction of Alkyl Halides

Reaction of ammonia or an alkylamine with an alkyl halide.

Ammonia	NH ₃	+	R-X	S _N 2 ►	$RNH_3^+ X^- \xrightarrow{NaOH}$	RNH_2	Primary
Primary	RNH_2	+	R-X	>	$R_2 NH_2^+ X^- \longrightarrow$	R ₂ NH	Secondary
Secondary	R ₂ NH	+	R-X	>	$R_3 NH^+ X^- \longrightarrow$	R ₃ N	Tertiary
Tertiary	R ₃ N	+	R-X	>	$R4N^{+}X^{-}$		

Problem of poly-alkylations.

$$\begin{array}{rcl} \mathsf{CH}_3(\mathsf{CH}_2)_6\mathsf{CH}_2\mathsf{Br} \ + \ 2\ \mathsf{NH}_3 & \longrightarrow & \mathsf{CH}_3(\mathsf{CH}_2)_6\mathsf{CH}_2\mathsf{NH}_2 \ + \ [\mathsf{CH}_3(\mathsf{CH}_2)_6\mathsf{CH}_2]_2\mathsf{NH} \\ & & 45\% & & 43\% \\ & & & & & & \\ [\mathsf{CH}_3(\mathsf{CH}_2)_6\mathsf{CH}_2]_3\mathsf{N} \ + \ [\mathsf{CH}_3(\mathsf{CH}_2)_6\mathsf{CH}_2]_4\mathsf{N}^\dagger \, \bar{\mathsf{Br}} \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$$

Reductive Amination of Aldehydes and Ketones

Amines can be synthesized in a single step by treatment of an aldehyde or ketone with ammonia or an amine in the presence of a reducing agent.

Amphetamine synthesis (central nervous system stimulant)

Reduction of Nitrobenzenes

Iron, zinc, tin, and stannous chloride (SnCl₂) in aqueous acid are also effective.

12.5 Reactions of Amines

Alkylation and acylation are two most important reactions of alkylamines.

Primary and secondary (but not tertiary) amines can be acylated with acid chlorides or acid anhydrides.

12.6 Heterocyclic Amines

Heterocycles contain one or more hetero (different) atoms in addition to carbon in their ring.

Pyrrole, a Five-Membered Aromatic Heterocycle

Pyridine, a Six-Membered Aromatic Heterocycle

The B₆ complex vitamins pyridoxal and pyridoxine (for synthesis of some amino acids)

Fused-Ring Aromatic Heterocycles

12.7 Alkaloids: Naturally Occurring Amines

Alkaloids – Their aqueous solutions are slightly basic.

HO HO

Ephedrin (bronchodilator and decongestant)

Cocane (anesthetic, central nervous system stimulant)

Atropine (antispasmodic for colitis)

Opium and Opiates

The morphine rule:

Biological activity requires (1) an aromatic ring, attached to (2) a quaternary carbon, attached to (3) two more carbons, attached to (4) a tertiary amine.

The morphine rule

Methadone

Meperidine